Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Redox Biol ; 68: 102941, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37907055

RESUMO

Sickle cell disease (SCD) is a hereditary hematological disease with high morbidity and mortality rates worldwide. Despite being monogenic, SCD patients display a plethora of disease-associated complications including anemia, oxidative stress, sterile inflammation, vaso-occlusive crisis-related pain, and vasculopathy, all of which contribute to multiorgan dysfunction and failure. Over the past decade, numerous small molecule drugs, biologics, and gene-based interventions have been evaluated; however, only four disease-modifying drug therapies are presently FDA approved. Barriers regarding effectiveness, accessibility, affordability, tolerance, and compliance of the current polypharmacy-based disease-management approaches are challenging. As such, there is an unmet pharmacological need for safer, more efficacious, and logistically accessible treatment options for SCD patients. Herein, we evaluate the potential of small molecule nitroalkenes such as nitro-fatty acid (NO2-FA) as a therapy for SCD. These agents are electrophilic and exert anti-inflammatory and tissue repair effects through an ability to transiently post-translationally bind to and modify transcription factors, pro-inflammatory enzymes and cell signaling mediators. Preclinical and clinical studies affirm safety of the drug class and a murine model of SCD reveals protection against inflammation, fibrosis, and vascular dysfunction. Despite protective cardiac, renal, pulmonary, and central nervous system effects of nitroalkenes, they have not previously been considered as therapy for SCD. We highlight the pathways targeted by this drug class, which can potentially prevent the end-organ damage associated with SCD and contrast their prospective therapeutic benefits for SCD as opposed to current polypharmacy approaches.


Assuntos
Anemia Falciforme , Doenças Vasculares , Humanos , Animais , Camundongos , Anemia Falciforme/tratamento farmacológico , Dor , Inflamação/complicações
2.
Redox Biol ; 67: 102866, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37703667

RESUMO

We recently reported a previously unknown salutary role for xanthine oxidoreductase (XOR) in intravascular heme overload whereby hepatocellular export of XOR to the circulation was identified as a seminal step in affording protection. However, the cellular signaling and export mechanisms underpinning this process were not identified. Here, we present novel data showing hepatocytes upregulate XOR expression/protein abundance and actively release it to the extracellular compartment following exposure to hemopexin-bound hemin, hemin or free iron. For example, murine (AML-12 cells) hepatocytes treated with hemin (10 µM) exported XOR to the medium in the absence of cell death or loss of membrane integrity (2.0 ± 1.0 vs 16 ± 9 µU/mL p < 0.0001). The path of exocytosis was found to be noncanonical as pretreatment of the hepatocytes with Vaculin-1, a lysosomal trafficking inhibitor, and not Brefeldin A inhibited XOR release and promoted intracellular XOR accumulation (84 ± 17 vs 24 ± 8 hemin vs 5 ± 3 control µU/mg). Interestingly, free iron (Fe2+ and Fe3+) induced similar upregulation and release of XOR compared to hemin. Conversely, concomitant treatment with hemin and the classic transition metal chelator DTPA (20 µM) or uric acid completely blocked XOR release (p < 0.01). Our previously published time course showed XOR release from hepatocytes likely required transcriptional upregulation. As such, we determined that both Sp1 and NF-kB were acutely activated by hemin treatment (∼2-fold > controls for both, p < 0.05) and that silencing either or TLR4 with siRNA prevented hemin-induced XOR upregulation (p < 0.01). Finally, to confirm direct action of these transcription factors on the Xdh gene, chromatin immunoprecipitation was performed indicating that hemin significantly enriched (∼5-fold) both Sp1 and NF-kB near the transcription start site. In summary, our study identified a previously unknown pathway by which XOR is upregulated via SP1/NF-kB and subsequently exported to the extracellular environment. This is, to our knowledge, the very first study to demonstrate mechanistically that XOR can be specifically targeted for export as the seminal step in a compensatory response to heme/Fe overload.


Assuntos
Hemina , Xantina Desidrogenase , Animais , Camundongos , Xantina Desidrogenase/genética , Xantina Desidrogenase/metabolismo , Hemina/farmacologia , Ferro , NF-kappa B , Heme , Hepatócitos/metabolismo
3.
Nat Commun ; 14(1): 4817, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37558677

RESUMO

Neurons throughout the sensory pathway adapt their responses depending on the statistical structure of the sensory environment. Contrast gain control is a form of adaptation in the auditory cortex, but it is unclear whether the dynamics of gain control reflect efficient adaptation, and whether they shape behavioral perception. Here, we trained mice to detect a target presented in background noise shortly after a change in the contrast of the background. The observed changes in cortical gain and behavioral detection followed the dynamics of a normative model of efficient contrast gain control; specifically, target detection and sensitivity improved slowly in low contrast, but degraded rapidly in high contrast. Auditory cortex was required for this task, and cortical responses were not only similarly affected by contrast but predicted variability in behavioral performance. Combined, our results demonstrate that dynamic gain adaptation supports efficient coding in auditory cortex and predicts the perception of sounds in noise.


Assuntos
Córtex Auditivo , Percepção Auditiva , Animais , Camundongos , Percepção Auditiva/fisiologia , Ruído , Som , Córtex Auditivo/fisiologia , Adaptação Fisiológica/fisiologia , Estimulação Acústica
4.
Redox Biol ; 62: 102636, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36906950

RESUMO

Xanthine oxidase (XO) catalyzes the catabolism of hypoxanthine to xanthine and xanthine to uric acid, generating oxidants as a byproduct. Importantly, XO activity is elevated in numerous hemolytic conditions including sickle cell disease (SCD); however, the role of XO in this context has not been elucidated. Whereas long-standing dogma suggests elevated levels of XO in the vascular compartment contribute to vascular pathology via increased oxidant production, herein, we demonstrate, for the first time, that XO has an unexpected protective role during hemolysis. Using an established hemolysis model, we found that intravascular hemin challenge (40 µmol/kg) resulted in a significant increase in hemolysis and an immense (20-fold) elevation in plasma XO activity in Townes sickle cell phenotype (SS) sickle mice compared to controls. Repeating the hemin challenge model in hepatocyte-specific XO knockout mice transplanted with SS bone marrow confirmed the liver as the source of enhanced circulating XO as these mice demonstrated 100% lethality compared to 40% survival in controls. In addition, studies in murine hepatocytes (AML12) revealed hemin mediates upregulation and release of XO to the medium in a toll like receptor 4 (TLR4)-dependent manner. Furthermore, we demonstrate that XO degrades oxyhemoglobin and releases free hemin and iron in a hydrogen peroxide-dependent manner. Additional biochemical studies revealed purified XO binds free hemin to diminish the potential for deleterious hemin-related redox reactions as well as prevents platelet aggregation. In the aggregate, data herein reveals that intravascular hemin challenge induces XO release by hepatocytes through hemin-TLR4 signaling, resulting in an immense elevation of circulating XO. This increased XO activity in the vascular compartment mediates protection from intravascular hemin crisis by binding and potentially degrading hemin at the apical surface of the endothelium where XO is known to be bound and sequestered by endothelial glycosaminoglycans (GAGs).


Assuntos
Hemólise , Receptor 4 Toll-Like , Xantina Oxidase , Animais , Camundongos , Hemina , Fígado/metabolismo , Camundongos Knockout , Oxidantes , Xantina , Xantina Oxidase/metabolismo , Xantinas
5.
bioRxiv ; 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-36778269

RESUMO

Cortical neuronal populations can use a multitude of codes to represent information, each with different advantages and trade-offs. The auditory cortex represents sounds via a sparse code, which lies on the continuum between a localist representation with different cells responding to different sounds, and a distributed representation, in which each sound is encoded in the relative response of each cell in the population. Being able to dynamically shift the neuronal code along this axis may help with a variety of tasks that require categorical or invariant representations. Cortical circuits contain multiple types of inhibitory neurons which shape how information is processed within neuronal networks. Here, we asked whether somatostatin-expressing (SST) and vasoactive intestinal peptide-expressing (VIP) inhibitory neurons may have distinct effects on population neuronal codes, differentially shifting the encoding of sounds between distributed and localist representations. We stimulated optogenetically SST or VIP neurons while simultaneously measuring the response of populations of hundreds of neurons to sounds presented at different sound pressure levels. SST activation shifted the neuronal population responses toward a more localist code, whereas VIP activation shifted them towards a more distributed code. Upon SST activation, sound representations became more discrete, relying on cell identity rather than strength. In contrast, upon VIP activation, distinct sounds activated overlapping populations at different rates. These shifts were implemented at the single-cell level by modulating the response-level curve of monotonic and nonmonotonic neurons. These results suggest a novel function for distinct inhibitory neurons in the auditory cortex in dynamically controlling cortical population codes.

6.
J Neurosci ; 43(5): 749-763, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36604168

RESUMO

A key question in auditory neuroscience is to what extent are brain regions functionally specialized for processing specific sound features, such as location and identity. In auditory cortex, correlations between neural activity and sounds support both the specialization of distinct cortical subfields, and encoding of multiple sound features within individual cortical areas. However, few studies have tested the contribution of auditory cortex to hearing in multiple contexts. Here we determined the role of ferret primary auditory cortex in both spatial and nonspatial hearing by reversibly inactivating the middle ectosylvian gyrus during behavior using cooling (n = 2 females) or optogenetics (n = 1 female). Optogenetic experiments used the mDLx promoter to express Channelrhodopsin-2 in GABAergic interneurons, and we confirmed both viral expression (n = 2 females) and light-driven suppression of spiking activity in auditory cortex, recorded using Neuropixels under anesthesia (n = 465 units from 2 additional untrained female ferrets). Cortical inactivation via cooling or optogenetics impaired vowel discrimination in colocated noise. Ferrets implanted with cooling loops were tested in additional conditions that revealed no deficit when identifying vowels in clean conditions, or when the temporally coincident vowel and noise were spatially separated by 180 degrees. These animals did, however, show impaired sound localization when inactivating the same auditory cortical region implicated in vowel discrimination in noise. Our results demonstrate that, as a brain region showing mixed selectivity for spatial and nonspatial features of sound, primary auditory cortex contributes to multiple forms of hearing.SIGNIFICANCE STATEMENT Neurons in primary auditory cortex are often sensitive to the location and identity of sounds. Here we inactivated auditory cortex during spatial and nonspatial listening tasks using cooling, or optogenetics. Auditory cortical inactivation impaired multiple behaviors, demonstrating a role in both the analysis of sound location and identity and confirming a functional contribution of mixed selectivity observed in neural activity. Parallel optogenetic experiments in two additional untrained ferrets linked behavior to physiology by demonstrating that expression of Channelrhodopsin-2 permitted rapid light-driven suppression of auditory cortical activity recorded under anesthesia.


Assuntos
Córtex Auditivo , Localização de Som , Animais , Feminino , Córtex Auditivo/fisiologia , Furões/fisiologia , Channelrhodopsins/genética , Estimulação Acústica , Localização de Som/fisiologia , Percepção Auditiva/fisiologia , Audição
7.
J Clin Invest ; 132(18)2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36106636

RESUMO

Sudden cardiac death (SCD) in patients with heart failure (HF) is allied with an imbalance in reduction and oxidation (redox) signaling in cardiomyocytes; however, the basic pathways and mechanisms governing redox homeostasis in cardiomyocytes are not fully understood. Here, we show that cytochrome b5 reductase 3 (CYB5R3), an enzyme known to regulate redox signaling in erythrocytes and vascular cells, is essential for cardiomyocyte function. Using a conditional cardiomyocyte-specific CYB5R3-knockout mouse, we discovered that deletion of CYB5R3 in male, but not female, adult cardiomyocytes causes cardiac hypertrophy, bradycardia, and SCD. The increase in SCD in CYB5R3-KO mice is associated with calcium mishandling, ventricular fibrillation, and cardiomyocyte hypertrophy. Molecular studies reveal that CYB5R3-KO hearts display decreased adenosine triphosphate (ATP), increased oxidative stress, suppressed coenzyme Q levels, and hemoprotein dysregulation. Finally, from a translational perspective, we reveal that the high-frequency missense genetic variant rs1800457, which translates into a CYB5R3 T117S partial loss-of-function protein, associates with decreased event-free survival (~20%) in Black persons with HF with reduced ejection fraction (HFrEF). Together, these studies reveal a crucial role for CYB5R3 in cardiomyocyte redox biology and identify a genetic biomarker for persons of African ancestry that may potentially increase the risk of death from HFrEF.


Assuntos
Insuficiência Cardíaca , Miócitos Cardíacos , Animais , Morte Súbita Cardíaca , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Masculino , Camundongos , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Oxirredução , Volume Sistólico
8.
PLoS Comput Biol ; 18(6): e1010232, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35666708

RESUMO

[This corrects the article DOI: 10.1371/journal.pcbi.1007360.].

9.
Nat Commun ; 13(1): 1167, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35246528

RESUMO

Learning to avoid dangerous signals while preserving normal responses to safe stimuli is essential for everyday behavior and survival. Following identical experiences, subjects exhibit fear specificity ranging from high (specializing fear to only the dangerous stimulus) to low (generalizing fear to safe stimuli), yet the neuronal basis of fear specificity remains unknown. Here, we identified the neuronal code that underlies inter-subject variability in fear specificity using longitudinal imaging of neuronal activity before and after differential fear conditioning in the auditory cortex of mice. Neuronal activity prior to, but not after learning predicted the level of specificity following fear conditioning across subjects. Stimulus representation in auditory cortex was reorganized following conditioning. However, the reorganized neuronal activity did not relate to the specificity of learning. These results present a novel neuronal code that determines individual patterns in learning.


Assuntos
Córtex Auditivo , Condicionamento Clássico , Animais , Córtex Auditivo/fisiologia , Condicionamento Clássico/fisiologia , Medo/fisiologia , Humanos , Aprendizagem/fisiologia , Camundongos , Neurônios/fisiologia
10.
J Mol Cell Cardiol ; 162: 72-80, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34536439

RESUMO

Chronic hypoxia is a major driver of cardiovascular complications, including heart failure. The nitric oxide (NO) - soluble guanylyl cyclase (sGC) - cyclic guanosine monophosphate (cGMP) pathway is integral to vascular tone maintenance. Specifically, NO binds its receptor sGC within vascular smooth muscle cells (SMC) in its reduced heme (Fe2+) form to increase intracellular cGMP production, activate protein kinase G (PKG) signaling, and induce vessel relaxation. Under chronic hypoxia, oxidative stress drives oxidation of sGC heme (Fe2+→Fe3+), rendering it NO-insensitive. We previously showed that cytochrome b5 reductase 3 (CYB5R3) in SMC is a sGC reductase important for maintaining NO-dependent vasodilation and conferring resilience to systemic hypertension and sickle cell disease-associated pulmonary hypertension. To test whether CYB5R3 may be protective in the context of chronic hypoxia, we subjected SMC-specific CYB5R3 knockout mice (SMC CYB5R3 KO) to 3 weeks hypoxia and assessed vascular and cardiac function using echocardiography, pressure volume loops and wire myography. Hypoxic stress caused 1) biventricular hypertrophy in both WT and SMC CYB5R3 KO, but to a larger degree in KO mice, 2) blunted vasodilation to NO-dependent activation of sGC in coronary and pulmonary arteries of KO mice, and 3) decreased, albeit still normal, cardiac function in KO mice. Overall, these data indicate that SMC CYB5R3 deficiency potentiates bilateral ventricular hypertrophy and blunts NO-dependent vasodilation under chronic hypoxia conditions. This implicates that SMC CYB5R3 KO mice post 3-week hypoxia have early stages of cardiac remodeling and functional changes that could foretell significantly impaired cardiac function with longer exposure to hypoxia.


Assuntos
Proteínas Quinases Dependentes de GMP Cíclico , GMP Cíclico , Animais , GMP Cíclico/metabolismo , Guanilato Ciclase/metabolismo , Hipóxia , Camundongos , Miócitos de Músculo Liso/metabolismo , Óxido Nítrico/metabolismo , Guanilil Ciclase Solúvel/genética , Guanilil Ciclase Solúvel/metabolismo
11.
Blood ; 139(11): 1760-1765, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-34958669

RESUMO

Superoxide dismutase 2 (SOD2) catalyzes the dismutation of superoxide to hydrogen peroxide in mitochondria, limiting mitochondrial damage. The SOD2 amino acid valine-to-alanine substitution at position 16 (V16A) in the mitochondrial leader sequence is a common genetic variant among patients with sickle cell disease (SCD). However, little is known about the cardiovascular consequences of SOD2V16A in SCD patients or its impact on endothelial cell function. Here, we show SOD2V16A associates with increased tricuspid regurgitant velocity (TRV), systolic blood pressure, right ventricle area at systole, and declined 6-minute walk distance in 410 SCD patients. Plasma lactate dehydrogenase, a marker of oxidative stress and hemolysis, significantly associated with higher TRV. To define the impact of SOD2V16A in the endothelium, we introduced the SOD2V16A variant into endothelial cells. SOD2V16A increases hydrogen peroxide and mitochondrial reactive oxygen species (ROS) production compared with controls. Unexpectedly, the increased ROS was not due to SOD2V16A mislocalization but was associated with mitochondrial complex IV and a concomitant decrease in basal respiration and complex IV activity. In sum, SOD2V16A is a novel clinical biomarker of cardiovascular dysfunction in SCD patients through its ability to decrease mitochondrial complex IV activity and amplify ROS production in the endothelium.


Assuntos
Anemia Falciforme , Células Endoteliais , Anemia Falciforme/complicações , Anemia Falciforme/genética , Anemia Falciforme/metabolismo , Células Endoteliais/metabolismo , Humanos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
12.
Redox Biol ; 47: 102166, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34656824

RESUMO

NADPH oxidase 4 (NOX4) regulates endothelial inflammation by producing hydrogen peroxide (H2O2) and to a lesser extent O2•-. The ratio of NOX4-derived H2O2 and O2•- can be altered by coenzyme Q (CoQ) mimics. Therefore, we hypothesize that cytochrome b5 reductase 3 (CYB5R3), a CoQ reductase abundant in vascular endothelial cells, regulates inflammatory activation. To examine endothelial CYB5R3 in vivo, we created tamoxifen-inducible endothelium-specific Cyb5r3 knockout mice (R3 KO). Radiotelemetry measurements of systolic blood pressure showed systemic hypotension in lipopolysaccharides (LPS) challenged mice, which was exacerbated in R3 KO mice. Meanwhile, LPS treatment caused greater endothelial dysfunction in R3 KO mice, evaluated by acetylcholine-induced vasodilation in the isolated aorta, accompanied by elevated mRNA expression of vascular adhesion molecule 1 (Vcam-1). Similarly, in cultured human aortic endothelial cells (HAEC), LPS and tumor necrosis factor α (TNF-α) induced VCAM-1 protein expression was enhanced by Cyb5r3 siRNA, which was ablated by silencing the Nox4 gene simultaneously. Moreover, super-resolution confocal microscopy indicated mitochondrial co-localization of CYB5R3 and NOX4 in HAECs. APEX2-based electron microscopy and proximity biotinylation also demonstrated CYB5R3's localization on the mitochondrial outer membrane and its interaction with NOX4, which was further confirmed by the proximity ligation assay. Notably, Cyb5r3 knockdown HAECs showed less total H2O2 but more mitochondrial O2•-. Using inactive or non-membrane bound active CYB5R3, we found that CYB5R3 activity and membrane translocation are needed for optimal generation of H2O2 by NOX4. Lastly, cells lacking the CoQ synthesizing enzyme COQ6 showed decreased NOX4-derived H2O2, indicating a requirement for endogenous CoQ in NOX4 activity. In conclusion, CYB5R3 mitigates endothelial inflammatory activation by assisting in NOX4-dependent H2O2 generation via CoQ.


Assuntos
Citocromo-B(5) Redutase/metabolismo , Células Endoteliais , Peróxido de Hidrogênio , Animais , Células Cultivadas , Endotélio , Inflamação/genética , Camundongos , NADPH Oxidase 4/genética , NADPH Oxidases , Espécies Reativas de Oxigênio , Ubiquinona
13.
Hypertension ; 78(4): 912-926, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34420371

RESUMO

The arterial resistance vasculature modulates blood pressure and flow to match oxygen delivery to tissue metabolic demand. As such, resistance arteries and arterioles have evolved a series of highly orchestrated cell-cell communication mechanisms between endothelial cells and vascular smooth muscle cells to regulate vascular tone. In response to neurohormonal agonists, release of several intracellular molecules, including nitric oxide, evokes changes in vascular tone. We and others have uncovered novel redox switches in the walls of resistance arteries that govern nitric oxide compartmentalization and diffusion. In this review, we discuss our current understanding of redox switches controlling nitric oxide signaling in endothelial and vascular smooth muscle cells, focusing on new mechanistic insights, physiological and pathophysiological implications, and advances in therapeutic strategies for hypertension and other diseases.


Assuntos
Pressão Sanguínea/fisiologia , Óxido Nítrico/fisiologia , Resistência Vascular/fisiologia , Comunicação Celular , Proteínas Quinases Dependentes de GMP Cíclico/fisiologia , Células Endoteliais/fisiologia , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/fisiologia , Oxirredução , Transdução de Sinais/fisiologia
14.
Free Radic Biol Med ; 167: 321-334, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33753238

RESUMO

Coenzyme Q (CoQ) is ubiquitously embedded in lipid bilayers of various cellular organelles. As a redox cycler, CoQ shuttles electrons between mitochondrial complexes and extramitochondrial reductases and oxidases. In this way, CoQ is crucial for maintaining the mitochondrial function, ATP synthesis, and redox homeostasis. Cardiomyocytes have a high metabolic rate and rely heavily on mitochondria to provide energy. CoQ levels, in both plasma and the heart, correlate with heart failure in patients, indicating that CoQ is critical for cardiac function. Moreover, CoQ supplementation in clinics showed promising results for treating heart failure. This review provides a comprehensive view of CoQ metabolism and its interaction with redox enzymes and reactive species. We summarize the clinical trials and applications of CoQ in heart failure and discuss the caveats and future directions to improve CoQ therapeutics.


Assuntos
Insuficiência Cardíaca , Ubiquinona , Ciclo Celular , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/metabolismo , Humanos , Mitocôndrias/metabolismo , Oxirredução , Oxirredutases/metabolismo , Ubiquinona/metabolismo
15.
Arterioscler Thromb Vasc Biol ; 41(2): 769-782, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33267657

RESUMO

OBJECTIVE: Chronic hemolysis is a hallmark of sickle cell disease (SCD) and a driver of vasculopathy; however, the mechanisms contributing to hemolysis remain incompletely understood. Although XO (xanthine oxidase) activity has been shown to be elevated in SCD, its role remains unknown. XO binds endothelium and generates oxidants as a byproduct of hypoxanthine and xanthine catabolism. We hypothesized that XO inhibition decreases oxidant production leading to less hemolysis. Approach and Results: Wild-type mice were bone marrow transplanted with control (AA) or sickle (SS) Townes bone marrow. After 12 weeks, mice were treated with 10 mg/kg per day of febuxostat (Uloric), Food and Drug Administration-approved XO inhibitor, for 10 weeks. Hematologic analysis demonstrated increased hematocrit, cellular hemoglobin, and red blood cells, with no change in reticulocyte percentage. Significant decreases in cell-free hemoglobin and increases in haptoglobin suggest XO inhibition decreased hemolysis. Myographic studies demonstrated improved pulmonary vascular dilation and blunted constriction, indicating improved pulmonary vasoreactivity, whereas pulmonary pressure and cardiac function were unaffected. The role of hepatic XO in SCD was evaluated by bone marrow transplanting hepatocyte-specific XO knockout mice with SS Townes bone marrow. However, hepatocyte-specific XO knockout, which results in >50% diminution in circulating XO, did not affect hemolysis levels or vascular function, suggesting hepatocyte-derived elevation of circulating XO is not the driver of hemolysis in SCD. CONCLUSIONS: Ten weeks of febuxostat treatment significantly decreased hemolysis and improved pulmonary vasoreactivity in a mouse model of SCD. Although hepatic XO accounts for >50% of circulating XO, it is not the source of XO driving hemolysis in SCD.


Assuntos
Anemia Falciforme/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Eritrócitos/efeitos dos fármacos , Febuxostat/farmacologia , Hemodinâmica/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Artéria Pulmonar/efeitos dos fármacos , Xantina Oxidase/antagonistas & inibidores , Anemia Falciforme/sangue , Anemia Falciforme/enzimologia , Anemia Falciforme/fisiopatologia , Animais , Modelos Animais de Doenças , Eritrócitos/enzimologia , Fígado/enzimologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Artéria Pulmonar/enzimologia , Artéria Pulmonar/fisiopatologia , Função Ventricular/efeitos dos fármacos , Xantina Oxidase/genética , Xantina Oxidase/metabolismo
16.
Heart ; 106(8): 562-568, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31822569

RESUMO

Sickle cell disease (SCD) is caused by a single point mutation in the gene that codes for beta globin synthesis, causing haemoglobin polymerisation, red blood cell stiffening and haemolysis under low oxygen and pH conditions. Downstream effects include widespread vasculopathy due to recurring vaso-occlusive events and haemolytic anaemia, affecting all organ systems. Cardiopulmonary complications are the leading cause of death in patients with SCD, primarily resulting from diastolic heart failure (HF) and/or pulmonary hypertension (PH). HF in SCD often features biventricular cardiac hypertrophy and left ventricular (LV) diastolic dysfunction. Among HF cases in the general population, approximately half occur with preserved ejection fraction (HFpEF). The insidious evolution of HFpEF differs from the relatively acute evolution of HF with reduced ejection fraction. The PH of SCD has diverse origins, which can be pulmonary arterial (precapillary), pulmonary venous (postcapillary) or pulmonary thromboembolic. It is also appreciated that patients with SCD can develop both precapillary and postcapillary PH, with elevations in LV diastolic pressures, as well as elevations in transpulmonary pressure gradient and pulmonary vascular resistance. Regardless of the cause of PH in SCD, its presence significantly reduces functional capacity and increases mortality. PH that occurs in the presence of HFpEF is usually of postcapillary origin. This review aims to assemble what has been learnt from clinical and animal studies about the manifestation of PH-HFpEF in SCD, specifically the contributions of LV diastolic dysfunction and myocardial fibrosis, in an attempt to gain an understanding of its evolution.


Assuntos
Anemia Falciforme/complicações , Insuficiência Cardíaca Diastólica/etiologia , Insuficiência Cardíaca/complicações , Hipertensão Pulmonar/complicações , Volume Sistólico/fisiologia , Função Ventricular Esquerda/fisiologia , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca Diastólica/fisiopatologia , Humanos , Hipertensão Pulmonar/fisiopatologia , Resistência Vascular/fisiologia
17.
PLoS Comput Biol ; 15(12): e1007360, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31815941

RESUMO

Neural systems can be modeled as complex networks in which neural elements are represented as nodes linked to one another through structural or functional connections. The resulting network can be analyzed using mathematical tools from network science and graph theory to quantify the system's topological organization and to better understand its function. Here, we used two-photon calcium imaging to record spontaneous activity from the same set of cells in mouse auditory cortex over the course of several weeks. We reconstruct functional networks in which cells are linked to one another by edges weighted according to the correlation of their fluorescence traces. We show that the networks exhibit modular structure across multiple topological scales and that these multi-scale modules unfold as part of a hierarchy. We also show that, on average, network architecture becomes increasingly dissimilar over time, with similarity decaying monotonically with the distance (in time) between sessions. Finally, we show that a small fraction of cells maintain strongly-correlated activity over multiple days, forming a stable temporal core surrounded by a fluctuating and variable periphery. Our work indicates a framework for studying spontaneous activity measured by two-photon calcium imaging using computational methods and graphical models from network science. The methods are flexible and easily extended to additional datasets, opening the possibility of studying cellular level network organization of neural systems and how that organization is modulated by stimuli or altered in models of disease.


Assuntos
Córtex Auditivo/fisiologia , Modelos Neurológicos , Rede Nervosa/fisiologia , Animais , Córtex Auditivo/citologia , Sinalização do Cálcio , Rastreamento de Células , Biologia Computacional , Feminino , Masculino , Camundongos , Camundongos Endogâmicos , Microscopia de Fluorescência por Excitação Multifotônica , Rede Nervosa/citologia
18.
Blood Adv ; 3(23): 4104-4116, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31821458

RESUMO

Pulmonary and systemic vasculopathies are significant risk factors for early morbidity and death in patients with sickle cell disease (SCD). An underlying mechanism of SCD vasculopathy is vascular smooth muscle (VSM) nitric oxide (NO) resistance, which is mediated by NO scavenging reactions with plasma hemoglobin (Hb) and reactive oxygen species that can oxidize soluble guanylyl cyclase (sGC), the NO receptor. Prior studies show that cytochrome b5 reductase 3 (CYB5R3), known as methemoglobin reductase in erythrocytes, functions in VSM as an sGC heme iron reductase critical for reducing and sensitizing sGC to NO and generating cyclic guanosine monophosphate for vasodilation. Therefore, we hypothesized that VSM CYB5R3 deficiency accelerates development of pulmonary hypertension (PH) in SCD. Bone marrow transplant was used to create SCD chimeric mice with background smooth muscle cell (SMC)-specific tamoxifen-inducible Cyb5r3 knockout (SMC R3 KO) and wild-type (WT) control. Three weeks after completing tamoxifen treatment, we observed 60% knockdown of pulmonary arterial SMC CYB5R3, 5 to 6 mm Hg elevated right-ventricular (RV) maximum systolic pressure (RVmaxSP) and biventricular hypertrophy in SS chimeras with SMC R3 KO (SS/R3KD) relative to WT (SS/R3WT). RV contractility, heart rate, hematological parameters, and cell-free Hb were similar between groups. When identically generated SS/R3 chimeras were studied 12 weeks after completing tamoxifen treatment, RVmaxSP in SS/R3KD had not increased further, but RV hypertrophy relative to SS/R3WT persisted. These are the first studies to establish involvement of SMC CYB5R3 in SCD-associated development of PH, which can exist in mice by 5 weeks of SMC CYB5R3 protein deficiency.


Assuntos
Anemia Falciforme/complicações , Citocromos b5/deficiência , Hipertensão Pulmonar/fisiopatologia , Animais , Humanos , Camundongos
19.
Blood Adv ; 3(17): 2679-2687, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31506286

RESUMO

Sickle cell disease (SCD) is an inherited hemoglobinopathy caused by a single point mutation in the ß-globin gene. As a consequence, deoxygenated hemoglobin polymerizes triggering red blood cell sickling and hemolysis, vaso-occlusion, and ischemia/reperfusion. Allied to these pathologies is the overproduction of reactive oxygen species driven by hemoglobin Fenton chemistry and peroxidase reactions as well as by secondary activation of vascular oxidases, including NAD(P)H oxidase and xanthine oxidase. In addition, hypoxia, produced by sickle red blood cell occlusion, disrupts mitochondrial metabolism and generates excess superoxide through electron leak from the mitochondrial respiratory chain. Superoxide dismutase 2 (SOD2) is a mitochondrial-specific antioxidant enzyme that dismutates superoxide to hydrogen peroxide, which is then converted to water by catalase and glutathione peroxidase. In SCD, the antioxidant defense system is significantly diminished through decreased expression and activity levels of antioxidant enzymes, including superoxide dismutase, catalase, and glutathione peroxidase. From a translational perspective, genetic variants including a missense variant in SOD2 (valine to alanine at position 16) are present in 45% of people with African ancestry and are associated with increased sickle complications. While it is known that there is an imbalance between oxidative species and antioxidant defenses in SCD, much more investigation is warranted. This review summarizes our current understanding of antioxidant defense systems in SCD, particularly focused on SOD2, and provides insight into challenges and opportunities as the field moves forward.


Assuntos
Anemia Falciforme/enzimologia , Superóxido Dismutase/fisiologia , Anemia Falciforme/metabolismo , Anemia Falciforme/patologia , Antioxidantes/metabolismo , Humanos , Hipóxia/etiologia , Hipóxia/metabolismo , Mitocôndrias/metabolismo , Mutação de Sentido Incorreto , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
20.
Nat Commun ; 10(1): 3019, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31289272

RESUMO

Auditory cortex is required for sound localisation, but how neural firing in auditory cortex underlies our perception of sound sources in space remains unclear. Specifically, whether neurons in auditory cortex represent spatial cues or an integrated representation of auditory space across cues is not known. Here, we measured the spatial receptive fields of neurons in primary auditory cortex (A1) while ferrets performed a relative localisation task. Manipulating the availability of binaural and spectral localisation cues had little impact on ferrets' performance, or on neural spatial tuning. A subpopulation of neurons encoded spatial position consistently across localisation cue type. Furthermore, neural firing pattern decoders outperformed two-channel model decoders using population activity. Together, these observations suggest that A1 encodes the location of sound sources, as opposed to spatial cue values.


Assuntos
Córtex Auditivo/fisiologia , Vias Auditivas/fisiologia , Neurônios/fisiologia , Localização de Som/fisiologia , Estimulação Acústica/instrumentação , Estimulação Acústica/métodos , Potenciais de Ação/fisiologia , Animais , Córtex Auditivo/citologia , Comportamento Animal/fisiologia , Sinais (Psicologia) , Feminino , Furões , Microeletrodos , Modelos Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA